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1 Introduction and Motivation

In this series of lecture we shall give the necessary background for studying and understanding
the André-Oort conjecture. The conjecture can be stated for arbitrary Shimura varieties. We
restrict ourselves however to simple cases which need only some classical mathematical back-
ground. We begin with studying the situation when the underlying Shimura variety is of the
simplest possible form, namely a product P1×P1 of two projective lines. However here we meet
already the prototype of the problem. The space P1 × P1 can be seen as the space classifying
those abelian surfaces which are products of two elliptic curves. To understand this moduly
space, as it is called, we shall briefly introduce the concept of elliptic curves together with the
concept of complex multiplication.

The next step in the complexity of the problem will be to replace the product of two elliptic
curves by arbitrary abelian surfaces and study their moduli space S2 which is the Siegel upper
half plane H2 consisting of complex 2 × 2-matrices subject to some extra condition and taken
modulo the symplectic group Sp(4,Z). The Siegel upper half plane has dimension n2+n

2
for

general n which becomes 3 in the case of S2 and the real dimension of Sp(2n,R) is n(2n + 1)
which is 10 when n=2. Again we shall briefly introduce this space and this gives our second
example. Its points classify isomorphism classes of abelian varieties of dimension 2, so-called
abelian surfaces which we shall also introduce in an elementary way.

The space P1 × P1 mentioned above is a very particular case for such a moduli space and
sits as an algebraic surface in S2. Another example to which will shall pay some attention
are the famous Hilbert modular surfaces which were introduced and first studied by Hilbert.
They classify abelian surfaces with a special type of endomorphism algebra which appears as a
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particular case in the classification theory of the endomorphism algebra of an abelian variety.
There are four possible types which were found by Albert when establishing the classification.
Going through the classification one sees that each class Φ of endomorphism algebras gives rise
to a subvariety SΦ of S2. There are infinitely many such subspaces which are called Shimura
(sub-)varieties. We shall carefully and in an elementary way introduce these objects and this
then lays the ground for looking into the original conjecture of André-Oort.

The conjecture gives some very interesting statement about the geometric nature of the Zariski
closure of a set, finite or infinite, of Shimura subvarieties of S2. When the Shimura subvari-
eties are all of dimension zero and then are just points in S2 we are in the situation of the
original conjecture. It will turn out that the addressed closure will be again a finite coillec-
tion of Shimura subvarieties. This is in our situation the upshot of the conjecture of André-Oort.

In these lectures we shall explain the conjecture but not go into any detailed proof of it. There
are several reasons. The conjecture is only proved in the case of the Shimura variety P1 × P1

and there is so far no proof in the general situation. In the P1 × P1-case there are three very
different approaches which are all too involved as on can go into them in short time. One is by
André, one by Pila and one by Kühne. The first two proofs are not effective whereas Kühne’s
proof relies on the Baker Theory and is fully effective. We leave it then to Kühne to give in a
later lecture some account of his proof. In the case of arbitrary dimension one only knows that
the Generalized Riemann Hypothesis implies the André-Oort conjecture. This has been shown
in a paper by Yafaev and Klingler which however is since years in the refereeing process. But
it is unknown whether the hypothesis is true or not.

2 Elliptic Curves

Elliptic curves belong to the simplest on the one side and on the other side richest geometric
structures in mathematics. They come up in almost every mathematical subjects.

To define them we take the complex plane C and in it a lattice. This is a free and abelian
subgroup of the form Λ = Zω1 + Zω2 of C which generates C over the reals. To give a lattice
is the same as to give a group homomorphism ω : Z2 −→ C such that if e1, e2 denotes the
standard basis for Z2 then the imaginary part of ω1/ω2 is different from 0 for ω1 = ω(e1) and
ω2 = ω(e2). The famous Weierstrass ℘-function

℘(z) = ℘(z; Λ) =
1

z2
+

∑

06=ω∈Λ

(

1

(z − ω)2
− 1

ω2

)

is a meromorphic function on the complex plane with double poles on Λ and periodic with
period lattice Λ. The periodicity implies that the function descends to the quotient C/Λ which
is a compact complex manifold. This means that it induces on the quotient a rational function
with one pole of order two at the image of 0. Together with its derivative ℘′(z; Λ) it defines a
holomorphic map, called the exponential map,

expΛ : C −→ P2 (1)

z 7→ [℘(z) : ℘′(z) : 1]

from C into the complex plane with image a smooth projective curve given in affine coordinates
(x, y) with exp∗

Λ x = ℘(z) and exp∗
Λ y = ℘′(z) by a cubic equation, called Weierstrass normal
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form or Weierstrass equation,

y2 = 4x3 − g2x− g3. (2)

The exponential map is a homomorphism and has as kernel the lattice Λ. The coefficients g2
and g3 are functions in Λ given by the Eisenstein series

gi(Λ) =
∑

06=ω∈Λ

1

ω2i
. (3)

The discriminant ∆(Λ) = g2(Λ)
3 − 27g3(Λ)

2 of the cubic on the right side of (2) is different
from zero and again a function of the lattice. The same is true for the very important function

j(λ) = 1728
g2(Λ)

3

∆(Λ)
, (4)

Klein’s j-invariant, and all the four functions are functions on the space of lattices. They are
homogeneous of weight 4, 6, 12 and 0 with respect to the action (t,Λ) 7→ tΛ of C× on the space
of lattices L. This means that

f(tΛ) = t−w(f)f(Λ)

for any of the four functions above with w(f) the weight of f . This carries over to the elliptic
functions ℘ and ℘′ if the action is extended to the variable z and we get

℘(tz; tλ) = t−2℘(z; Λ)

℘′(tz; tΛ) = t−3℘′(z; Λ).

Any two lattices Λ and Λ′ are said to be isomorphic if and only if Λ′ = tΛ for some t ∈ C×. This
shows that we may normalize the lattice Λ = Zω1+Zω2 such that a basis is given by ω1 = τ and
ω2 = 1 and with imaginary part ℑ(τ) 6= 0. In other words τ is taken from the disjoint union
H+ ⊔ H− where H+ and H− denote the upper and the lower half plane respectively. We write
Λτ for the normalized lattice. This amounts to the same as taking the quotient L/C× which
then consists of isomorphism classes of lattices. The group GL(2,R) acts on L by mapping the
lattice Λ = Zω1 + Zω2 to the lattice γΛ with basis

γω1 = aω1 + bω2 (5)

γω2 = cω1 + dω2 (6)

for γ =
(

a b
c d

)

∈ GL(2,R) and the action commutes with the C×-action. On the normalized
lattices Λτ it acts through fractional linear transformations

τ 7→ γ(τ) =
aτ + b

cτ + d

so that γΛτ = (cτ + d)Λγ(τ) = (γω2)Λγ(τ). The space of lattices L becomes a homogeneous
space under this action and can be expressed as L = GL(2,R) · Λ√

−1.

We donote by R×
>0 the multiplicative group of positive real numbers. The isomorphism

ι : C× → R×
>0 · SO(2,R)

which maps z = reiφ, 0 < r, φ ∈ [0, 1), to

ι(z) =

(

r 0
0 r

)(

cosφ − sin φ
sinφ cosφ

)
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gives a representation of C× in GL(2,R) and induces by right multiplication (z, γ) 7→ γ · ι(z)T
of matrices an action of C× on GL(2,R) for which we have

ι(z)Λ√
−1 = r(cosφ+ i sinφ)Λι(z)(

√
−1) = zΛ√

−1.

Since GL(2,R) acts on the union of the upper and lower half-plane H+ ⊔ H− via fractional
linear transformation and since i is fixed under this action of R×

>0 · SO(2,R) one deduces that
the map γ 7→ Λγ(

√
−1) induces an isomorphism

GL(2,R)/R×
>0 · SO(2,R) −→ L/C×.

Any lattice is fixed under the group SL(2,Z) and therefor we may further divide out the
stabilizer SL(2,Z)of a lattice. This leads finally to an isomorphism

SL(2,Z)\GL(2,R)/R×
>0 · SO(2,R) ≃ SL(2,Z)\L/C× (7)

and one obtains the first and very elementary example of a Shimura variety which we denote
by S1. The result of our construction is a complex manifold.

Remark : We write GL(2,R) as

GL(2,R)+ ⊔
[

GL(2,R)+
(

1 0
0 −1

)]

with GL(2,R)+ the subgroup of element with positive determinant which can be written as
R×

>0 · SL(2,R) by expressing γ as
√

det(γ) δ with δ =
√

det(γ)−1 γ ∈ SL(2, R). Then the left
side of (7) becomes

SL(2,Z)\SL(2, R)/SO(2, R) ⊔ SL(2,Z)\SL(2, R)
(

1 0
0 −1

)

/SO(2, R) (8)

and is isomorphic to
SL(2,Z)\H+ ⊔ SL(2,Z)\H−

with H± the upper respectively the lower half-plane. The isomorphism is induced by the map
which sends γ to γ(i). �

For an arithmetic analysis we need an algebraic manifold however and it should be defined over
a number field. This means that we have to find an isomorphism of the Shimura variety, which
so far is only a complex manifold, with an algebraic variety. All tools which are needed for
establishing such an isomorphism are already to our disposal.

3 Elliptic Moduli Space and Complex Multiplication

In this second lecture we shall enrich the purely analytic theory which has been exposed in
the previous lecture by its algebraic and number theoretical aspects. The first step is to make
out of the Shimura variety an algebraic variety and the second step is to define the so-called
CM-points which will become crucial for stating the André-Oort conjecture. For this we need
to introduce complex multiplication on elliptic curves.

In the last lecture we have already made out of an complex torus C/Λ an elliptic curve E which
is a plane algebraic curve and the exponential map furnishes such an isomorphism. The curve
E is defined over the field k(E) = Q(g2, g3) with g2 and g3 the coefficients in the equation (2).
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If k(E) is an algebraic number field then we say that E is defined over an algebraic number
field. More generally we say that an elliptic curve E∗ is defined over an algebraic number field
if it is isomorphic to an elliptic curve E with k(E) ⊂ Q.

Remark : From our description we see that the Zariski open set U in the affine plane A2 with
coordinates g2 and g3 defined by ∆ 6= 0 is a parameter space for elliptic curves. If we divide
out the action of C× given by

gi 7→ t−2igi

for i = 2, 3 we get basically the algebraic variety P1\{∞} with the Klein j-function as isomor-
phism from C×\U to P1\{∞}. This we carry out now on the level of lattices, respectively the
upper half plane.
�

As we have seen, the function j(Λ) is a function on L which is invariant under the action of
the subgroup C× · SL(2,Z) and induces therefor a holomorphic map

j : S1 = C×\L/SL(2,Z) −→ P1. (9)

which maps the class of Λ to j(Λ) for any Λ in the class. It is a 2-fold covering which has two
connected components. They correspond to the two half planes H± as mentioned earlier.
Instead of S1 we use now the upper half plane H = H+ which is the more classical notion. Then
the j-function gives a holomorphic map

j : H −→ P1

τ 7→ j(τ) = 1728
g2(τ)

3

∆(τ)

where we write g2(τ) for g2(Λτ ) and ∆(τ) for ∆(Λτ ). Since the function j(τ) is invariant under
the action of SL(2,Z) it factors through the quotient X0(1) = SL(2,Z)\H. Since

(

1 1
0 1

)

is a
matrix in SL(2,Z) which acts on H by τ 7→ τ +1 we see that j(τ) is periodic with period 1 and
therefor has a Fourier expansion

j(q) =
1

q
+ 744 + 196884q + 21499760q2 + 864299970q3 + · · · =

∞
∑

−1

c(n)qn (10)

in q = e2πiτ with a pole of order 1 at the “cusp” ∞ 1.

1It is an interesting problem to see whether the coefficients c(n) can be explained conceptually. One of the
surprises in mathematics was that they are indeed related to a uniquely determined sporadic simple group,
called the monster group M. Its order is

2463205976112133171923293141475971≡ 8 · 1053

It was observed by Conway and Norton that the integers c(n) are closely related to the degrees of the finitely
many irreducible representations of the monster group M. In fact they are linear combinations with non-
negative coefficients in the degrees. This observation has been verified by Borcherds. He constructed an infinite
dimensional graded module

V♯ =

∞
∑

−1

Vn

where each Vn is a finite dimensional representation of M (whence a direct sum of irreducible representations
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The j-function induces an isomorphism

J : S1 −→ P1\{∞} (11)

with P1 as compactification. This shows that P1 can be regarded as a (smooth compactification
of a) Shimura variety.

We have already indicated in the Remark above thatthe algebraic way to do this construction
is to start with the open set

U : ∆ 6= 0

and to take the ring R of regular functions on U . It can be written as the localization R
of the polynomial ring Q[g2, g3] at the multiplicative monoid generated by ∆ = g32 − 27g23
which can be expressed as Q[g2, g3,∆

−1]. We let the group G = Q× act on R by gi 7→ t2igi
and ∆ 7→ t12∆ and then take the ring of invariant polynomials RG, this means that those
polynomials F (g2, g3,∆

−1) are selected for which

F (t4g2, t
6g3, t

−12∆−1) = F (g2, g4,∆
−1).

Using the defining equation for ∆ we see that R may be written as Q[g2, g3,∆
±] and all powers

of g3 can be reduced modulo ∆ to gi3 with i = 0, 1. The invariant polynomials are now those
which are homogeneous with respect to the weights 4, 6 and 12 and this means that these are
the polynomials in g2 and ∆−1 which are composed of monomials gi2∆

j for which 4i = −12j
and these are the polynomials in g32/∆. They can be expressed in terms of j and this shows that
the ring RG is Q[j] where j = 1728 · g32/∆ and gives the ring of regular functions on P1\{∞}.
The inclusion Q[g2, g3] ⊆ RG defines a morphism

Q×\U −→ P1\{∞}

which is again (11).

Our next goal is to determine the endomorphism algebra of an elliptic curve E. Such an en-
domorphism is an endomorphism of C/Λ and so can be seen as an endomorphism ϕ : C → C

with the property that ϕ(Λ) ⊆ Λ. An endomorphism ϕ of C is either zero or in GL(1,C) = C×

and then multiplication by some non-zero complex number ξ This means that ϕ(λ) = ξ · λ for
any λ ∈ Λ. Since it is at the same time in End(Λ) we can represent ϕ, if not zero, by a matrix
ρ(ϕ) ∈ GL(2,Z). From (5) we deduce after division by ω2 that

ξτ = aτ + b

ξ = cτ + d

and then that

τ =
aτ + b

cτ + d

with multiplicities) such that

j(q) =

∞
∑

−1

tr(1|Vn)q
n.

for 1 the neutral element of M. The construction extends to any any element g of M and one obtains in general
the so-called Thompson series

Tg(q) =

∞
∑

−1

ξn(g)q
n.
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which leads to a quadratic equation

cτ 2 + (d− a)τ − b = 0 (12)

for τ = ω2/ω1. Clarly c 6= 0 if and only if this equation has two imaginary quadratic roots τ , τ̄
with exactly one lying in the half-plane H+ and then the lattice takes up to isomorphism the
shape Λτ = Z+ Zτ . Furthermore the endomorphism ξ is in Λτ = Z+ Zτ . In this case we say
that E has complex multiplication. Then ξ can be determined by the characteristic polynomial
of ρ(ξ) which is

T 2 − (a + d)T + ad− bc

and one sees that ξ = cτ + d is an algebraic integer. This shows that End(E) = End(Λτ ) is
an order, that is a subring of finite index in the ring of integers in Q[τ ]. In general it differs
from the ring of integers and the reason is that the lattice Λτ is only a module over Z and not
necessarily an ideal. There is a small difference.
The ring can be determined in the following way. We consider the discriminant ∆ of the
equation (12). It is given by

(d− a)2 − 4cb = (d+ a)2 − 4(ac− bd) = trρ(ϕ)2 − 4 det ρ(ϕ).

It depends on ξ and the chosen basis 1, τ of the lattice. Since both, the trace and the determi-
nant, are invariant under SL(2,Z) we find that ∆ depends only on the lattice, not on the basis.
If ψ is another endomorphism we get a second equation

c′τ 2 + (d′ − a′)τ − b′ = 0 (13)

for τ of the same form. Since both quadratic equations have the same roots τ and τ we see
that they must be proportional (since the minimal polynomial for τ is uniquely determined)
and therefor both are multiples of the minimal polynomial. It follows that the discriminants
differ only by a square.. This means that ∆ = e2 D with D squarefree and independent of ξ,
the discriminant D(τ) of Q(τ). Then the ring of integers is

O = Z+ Z
D(τ)−

√

D(τ)

2

and the ring of endomorphisms is

Of = Z+ Zf
D(τ)−

√

D(τ)

2

with f the smallest among the numbers e introduced above.
If however c = 0 then we deduce that ℑ(d− a)τ = 0 which implies that d = a and further that
b = 0 whence ρ(ξ) = a id. It follows that in this case the endomorphism algebra is Z.

We now assume for the rest of this lecture that the curve E has complex multiplication by the
ring of integers O in Q(τ). We consider the class group of Q(τ) which is by definition the group
of fractional ideals modulo the subgroup of principal fractional ideals. 2 The order of the class
group is the class number hτ which is finite. It has been shown by Weber that the polynomial

Φ(τ) =
∏

(T − j([a]))

2The set of ideals in O is a multiplicative monoid on which one introduces an equivalence relation. We
say that a ∼ b if and only if there exist non-zero integers r and s in O such that (r)a = (s)b. The set of
equivalence classes is the class group. The group structure comes from the relation a · a = (N(a)) which implies
that a · a ∼ O.
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with the product taken over all ideal classes ofQ(τ) is a polynomial of degree hτ with coefficients
in O. It is monic and irreducible over Q(τ) and this implies in particular that for imaginary
quadratic τ the j-function takes values in the ring of integers of the field Q(τ, j(τ)) which is a
Galois extension of Q(τ) with [Q(τ, j(τ)) : Q(τ)] = hτ . A very deep theorem of Th. Schneider
implies that τ and (τ) are both algebraic if and only if τ is imaginary quadratic. If this is the
case then we call j(τ) a special point on the Shimura variety S1.

4 The Case P1 × P1

The aim of this section is to take the basic Shimura varieties which has been obtained form
lattices in C and study the surface P1 × P1 which corresponds to the product of two copies of
X0(SL(2Z), see (11) and in different notation (9). The surface X = X0(SL(2Z))×X0(SL(2Z))
can be written as the complement

X = P1 × P1 − {∞}× P1 − P1 × {∞}

of a union of two projective lines and its special points are of the form P = (J(τ1), J(τ2)).
A very interesting and conceptually new question is whether an algebraic curve C given by
equations with coefficients in a number field k does contains infinitely many special points or
not. Note that the special points on X are dense even in the natural topology of X. The
fields of definition of special points are Q(τ1, τ2)(J(τ1), J(τ2)) and the degrees of these fields are
unbounded. Our question asks for the existence of rational points on C in the compositum K
of fields which has infinite degree over the rationals.
It turns out that the question can have totally different answers depending on the nature of
the curve C and our first aim is to give an example of a curve in X with infinitely many special
points. This is done using the modular polynomial ΦN (x, y) which has the property that it is
irreducible and that ΦN (j(τ), j(Nτ)) = 0. 3 Its degree is given by the Dedekind ψ-function
and takes the value

deg ΦN = ψ(N) = N
∏

p|N

(

1 +
1

p

)

.

and defines a curve Y0(N) in A1 ×A1 →֒ P1 ×P1. In the case N = 1 when Γ0(1) = SL(2,Z) we
simply have Y0(1) = S1 with S1 defined in lecture 2 and then Y0(1) = Γ0(1)\H. In the general
case we get Y0(N) = Γ0(N)\H with

Γ0(N) =

{(

a b
c d

)

∈ SL(2,Z); c ≡ 0 mod N

}

,

one of the famous congruence subgroups of SL(2,Z). From this description one sees that there
is a holomorphic covering map πN : Y0(N) → Y0(1) which explains in some sense the modular
equation relating the points j(τ) and j(Nτ). The curve Y0(N) is one of the famous modular
curves and an algebraic model can be obtained by embedding the complex manifold Y0(N)
using again modular forms. The curve is not compact but can be compactified and we then get
an algebraic curve X0(N).

3The existence of a polynomial relation between j(τ) and j(Nτ) is that the lattice ΛNτ is a sublattice of
the lattice Λτ with Λτ/ΛNτ ≃ Z/NZ. The associated moduli space is then constructed from looking at pairs
(Λτ ,ΛNτ ) with Λτ/ΛNτ ≃ Z/NZ. Going through the same procedure as we did with just lattices we get a new
Shimura variety S1(N). The functor which lets forget the sublattice ΛNτ induces a covering S1(N) → S1. This
shows that the associated points j(τ) and (Nτ) on the moduli spaces are related by an algebraic equation of
degree the degree of the covering.
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For each positive integer n we let M(N) be the set of all integer matrices δ =
(

s t
u v

)

matrices
in M(2,Z) with det(δ) = N and M(N)∗ the set of all primitive elements in M(N), those with
(s, t, u, v) = 1. Then writing Γ for SL(2,Z) we get

M∗(N) = Γ
(

N 0
0 1

)

Γ (14)

and a decomposition as a finite disjoint union

M∗(N) =
⋃

α

Γα

into left cosets. As representatives we may take α of the form
(

a b
0 d

)

with ad = N and 0 ≤ b < d.
For short we write Γ for SL(2Z) and define

Γα = Γ ∩
(

αΓα−1
)

and in the case of
(

N 0
0 1

)

one gets in particular Γ0(N). It is not so difficult to compute the
index in Γ as ψ(N) = [Γ : Γ0(N)] (see [4], Prop. 9.3). Furthermore any two of the subgroups
Γα are conjugate. This is because of the decomposition (14) of M∗(N) as double coset which
allows to wriite α as δ

(

N 0
0 1

)

ǫ with δ and ǫ in Γ and we deduce that αΓα−1 is conjugate to
(

N 0
0 1

)

Γ
(

N 0
0 1

)−1
. Intersecting with Γ gives the claim.

For each representative α in the coset decomposition we define an embedding

∆α : H −→ H× H

τ 7−→ ∆α(τ) = (τ, ατ)

which is compatible with the action of Γα through the embedding

ια : Γα −→ Γα × Γα ⊆ Γ× Γ

γ 7−→ (γ, ad(α)γ)

which is a homomorphism as one can easily verify. To see the compatibility we calculate as
follows: Let γ be in Γα. Then

α(γτ) = (αγα−1)ατ = (ad(α)γ)ατ

This implies that

∆α(γτ) = (γτ, αγτ)

= (γτ, (ad(α)γ)ατ)

= ια(γ)(τ, ατ)

= ια(γ)∆α(τ)

and we deduce that ∆α descends to a totally geodesic map

ια : Sα = H/Γα → X = H× H/Γ× Γ (15)

from the Shimura curve Sα to the Shimura variety X.

As before the Riemann surface Sα has a algebraic model Y (Γα)) and on it there are infinitely
many special points. This shows that the question may have an unexpected answer. One would
rather have expected that such a set of points should be finite. The construction shows that
one has to avoid totally geodesic subvarieties. If one does then one gets the following theorem
obtained by André which settles the Andé-Oort conjecture in the case of the Shimura variety
X.
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Theorem 4.1 (André). Let ι : C → X be a curve defined over a number field and assume

that the curve contains infinitely many special points. Then C is one of the totally geodesic

subvarieties constructed above.

As already mentioned the first proof was given by André in 1990 and we give now a short sketch
of the proof by explaining the main ideas. If the curve is not already defined over Q we may
replace it by the union of its conjugates and therefor may assume that it is defined overQ. Under
the obvious hypothesis that the curve is not contained in the boundary {∞}×P1−P1×{∞} we
considers the intersection of the curve with the boundary. If there are infinitely many special
points on the curve they have a boundary point as a limit point. Since the curve and the
boundary are defined over a number field the intersection points have coordinates in an algebraic
number field. We call P∞ a limit point and Pn = (j(τn), j(τ

′
n)) a subsequence of the rational

points on C converging to P∞ and with τn, τ
′
n both imaginary quadratic. Using class field theory

and replacing the sequence possibly by a subsequence it is shown that the discriminants Dn, D
′
n

of the imaginary quadratic number fields associated with τn, τ
′
n and with n large enough generate

the same field and furthermore that he quotient D′
n/Dn takes a value which is independent of

n for infinitely many n. At least one of the component of P∞ = (P∞1
, P∞2

), say the first, has
to be ∞. We put τn = sn + itn and deduce from the Fourier expansion (10) given in Lecture 3
that the numbers jn = j(τn) satisfy

log |jn| ≈ 2πtn. (16)

Furthermore we may assume that τn is in the fundamental domain and this implies that tn ≥√
2/2. On writing τn =

(

bn +
√
Dn

)

/2an we find that an ≤
√

−Dn/2.
The next step in the proof is to show that P∞ = (∞,∞), the intersection of the two boundary
divisors {∞} × P1 and P1 × {∞}. If not we could assume w.l.g. that P∞ = (∞, j′). Let

F (x, y) = 0 (17)

be the equation for the curve C. The rational transformation (u, v) = (x−1, y − j′) gives an
equation

G(u, v) = 0

for the curve such that G(0, 0) = F (∞, j′) = 0. In a neighborhood of (0, 0) the curve de-
composes into a finite number of connected analytic components which we can parametrize by
Puisseux series, that is power series in Xρ for rational ρ ∈ (0, 1). We take the branch v ≈ uρ

with |j′n − j′| ≈ |j−ρ
n | to deduce from (16) that

|j′n − j′| ≈ e−2πρ tn .

Using again Fourier we get

|j′n − j′| ≈ |e2πiτn − e2πiτ
′| ≈ |τ ′ − τ ′n|

where τ ′ is choosen so to satisfy j′ = j(τ ′). The last two approximations taken together lead to

|τ ′ − τ ′n| ≈ e−2πρ tn . (18)

We may assume that τ ′ 6= τ ′n for infinitely many n. Otherwise the curve has infinitely many
points with second coordinate j′ and this implies that the curve is P1 × {j′}. By Schneider’s
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theorem τ ′ must be transcendental since j(τ ′) is an intersection point of two curves defined
over Q and so is algebraic. In this case we write τ ′ = ω′

2/ω
′
1 and rewrite (18) as

|ω′
1 − τ ′nω

′
2| ≈ |ω′

2| e−2πρ tn .

This is a linear form in two elliptic logarithms with algebraic coefficients and by a quantitative
version of the Analytic Subgroup Theorem of Wüstholz [13] worked out by Hirata-Kohno [12]
the logarithm of the absolute value of the linear form is ≫ −

√

|Dn|, a contradiction. It follows
that we made a wrong assumption and this means that j′ = ∞ which proves our claim that
P∞ = (∞,∞).

It remains to show that the points Pn = (j(τn), j(τ
′
n)) are zeroes of some modular equation

Φn(X, Y ). To do so we consider a lattice of the form Z+ Zτ with τ imaginary quadratic. The
minimal polynomial aT 2 + bT + c for τ can be normalized such that |b| ≤ a ≤ c. Then

τ =
b+

√
D

2a

with discriminant D = b2 − 4ac = f 2d for square-free d. The order of the lattice becomes

O = Z+
D +

√
D

2
Z = Z+ f

d+
√
d

2
Z

and its index in O = Z+ d+
√
d

2
Z is f . Here we have used that f 2d ≡ fd mod 2.

We apply now the same type of asymptotics argument which were leading to (18). Since now
also j′ = ∞ we make the substitution s = x−1, t = y−1 which transforms (17) into an equation

H(s, t) = 0

around (0, 0) satisfied by infinitely many PN = (j(τN )
−1, j(τ ′N)

−1). As before we use Puiseux
to see that

|j(τ ′N )−1 − j(τN)
−ρ| ≪ e−2πρ

√
DN

which gives
|τ ′N − ρ τN | ≪ e−2πρ

√
DN .

This implies that DN ≈ D′
N which we use to deduce by Liouville that if τ ′N 6= ρ τN then

|τ ′N − ρ τN | ≫ |DN |−2,

a contradiction. This shows that with 0 ≤ ρ = r
s
≤ 1 we get τ ′N = ρ τN or, in other words, that

τ ′N =
(

r 0
0 s

)

τN . (19)

and we see that the curve is contained in the image of ιn,δ for δ =
(

r 0
0 s

)

and n = det δ.

5 Abelian Surfaces and their Moduli Space

We turn now to the generalization of the elliptic theory to abelian surface. We already met the
special case of a product of two elliptic curves which were classified by the product P1 × P1.
We repeat the construction briefly in the general case of an abelian surface and begin with

11



lattices of rank 4 instead of rank two. The situation becomes slightly more complicated than in
the elliptic set-up. We cannot just take a lattice because that would not lead to a nice space.
Instead we have to consider triples (Λ, J, E, ) with Λ a lattice of rank 4, with J ∈ End(Λ⊗Z R)
satisfying J2 = −id and with E : Λ×Λ → Z a skew-symmetric form with E = (J × J)∗E such
that if V denotes the space Λ⊗Z R then the associated hermitian form

H : V ×V −→ C

H(v, w) = E(Jv, w) + iE(v, w)

is positive definite. We call such a triple a polarized lattice. It is called principally polarized
if det(E) = 1. In the case of lattices of rank 2 which we were studying in the first lectures the
extra conditions are automatically satisfied and therefore did not become visible.

Remark : Polarized lattices arise naturally in geometry. If X is a smooth projective curve then
the homology group H1(X,Z) is a polarized lattice. The skew-symmetric form E on H1(X,Z)
is defined by taking the intersection of cycles and the elementary divisor theorem for skew-
symmetric forms give a symplectic basis e1, . . . , en, f1, . . . , fn. We then define J ∈ GL2n(Z)
by J(ei) = fi and J(fi) = −ei. It satisfies J2 = −1 and E(Ju, Jv) = E(u, v) and therefore
(H1(X,Z), J, E) is a principally polarized lattice. �

We can now proceed along the same lines as in the elliptic case and introduce the space L2

of polarized lattices of rank 4. The space L1 × L1 injects into L2. In this case Igusa has
introduced the analogues j1, j2, j3 of the modular function j with the analogous properties with
the difference that they have poles along L1×L1. Again they can be introduced via Eisenstein
series (see [1]). Working out the symmetries on L2 one gets a representation of isomorphism
classes of polarized lattices in terms of algebraic groups. The group GL(2,R) is replaced by
the group of symplectic similitudes GSp(2,R) which have the property that if γ is one of its
elements then

E(γv, γw) = m(γ)E(v, w)

for some multiplier m(γ) ∈ Z and SL(2,Z) becomes the symplectic group Γ = Sp(4,Z). The
result is a Shimura variety S2.

Exercise. Fill in the deatails.

The analog of the upper half-plane becomes the Siegel upper half-plan4 defined as

H2 = {τ ∈M2(C); τ = ⊺τ,ℑ(τ) positive definite} (20)

with an action of Γ given by

(γ, τ) ∈ Γ× H2 7→ (aτ + b)(cτ + d)−1.

for
γ =

(

a b
c d

)

∈ Γ, a, b, c, d ∈ M2(R).

4To give an explicit description for the space we write τ ∈ H2 as
(

u w
w u

)

and ℑτ as
( a b/2
b/2 c

)

and then the

associated quadratic form is positive definite if and only if the discriminant D(τ) = det(ℑτ) = b2 − 4ac is
positive. As a consequence the Siegel upper halfplane becomes the affine 3-space with the real cone D(τ) ≤ 0
removed.

12



It is clear that the product H × H embeds into H2. The embedding is again compatible with
the action of the modular groups and gives an embedding

ι : SL(2,Z)\H× SL(2,Z)\H = SL(2,Z)× SL(2,Z)\H× H −→ Sp(4,Z)\H.

Here we have obtained another example of a so-called modular embedding

ι : S1 × S1 −→ S2

of a Shimura variety of dimension 2 into a Shimura variety of dimension 3.

The definition of the functions j1, j2 and j3 relies on Eisenstein series for the group Sp(4,Z).
They are defined as

E2k(τ) =
∑

c,d

det(cτ + d)−2k (21)

with the sum over all inequivalent bottom rows (c, d) with respect to left multiplication by
SL(2,Z) taken from the set

(

a b
c d

)

∈ Γ and with τ ∈ H2.
We define

χ10 = −43867 · 2−12 · 3−5 · 5−2 · 7−1 · 53−1(E4E6 − E10)

χ12 = 131 · 593 · 2−13 · 3−7 · 5−2 · 7−2 · 337−1
(

32 · 72E3
4 + 2 · 53E2

6 − 691E12

)

and then the Igusa modular functions become

j1 = 2 · 35χ
5
12

χ6
10

, j2 = 2−3 · 33E4χ
3
12

χ4
10

j3 = 2−5 · 3E6χ
2
12

χ3
10

+ 2−3 · 32E4χ
3
12

χ4
10

.

The Igusa functions induce an rational map

j : H2 −→ P3 (22)

τ 7→ (j1(τ) : j1(τ) : j1(τ) : 1). (23)

which factors through the quotient

J : S2 ≃ Γ\H2 −→ P3.

and contracts the image of ι to a point.

The Igusa functions have a Fourier expansion which can be written as
∑

T

a(T ) exp (2πitr(Tτ))

where the summation is over all symmetric and half-integer matrices T =
( a b/2
b/2 d

)

with integer

coefficients a, b, c. The a(T ) are zero unless the quadratic form attached to T is positive semi-
definite. This has been discovered by Köcher. It is very interesting for us to notice that the
Fourier expansion of the modular form χ10 which defines the boundary of S2 takes the form

χ10 ∼ q1q2q3 (1 + ǫ(q1, q2, q3))

with ǫ having only non-zero terms of degree at least 1.
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With a principally polarized lattice Λ we can associate a complex torus C2/Λ which is a com-
pact complex manifold with the structure of a projective algebraic variety, the 2-dimensional
analogue of an elliptic curve. The situation here is very similar to the elliptic case since there
is a second interpretation of this moduli space as the moduli space of hyperelliptic curves of
genus 2 given by an equation of the form

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)(x− λ4) (24)

with λ = (λ1, λ2, λ3, λ4) ∈ A4. The curve is non-singular provided that the discriminant ∆ is
non-zero. The zero locus ∆ = 0 of the discriminant is an arrangement of hyperplanes and we
are in a similar situation as for elliptic curves. We do not follow further the point of view since
one has to go into the theory of invariants of quintics and sextics. 5

On the algebraic side there is the moduli space of principally polarized abelian surfaces M2.
By a certain ”blow-upo” construction [2] and [3] the moduli variety A2 and an embedding

J : Γ\H2 →֒ A2

are obtained. It has the property that it contains P1 × P1 as a Shimura subvariety.

6 Albert’s Classification and the Zoo of Shimura Vari-

eties of low Dimension

In our last section we shall make an excursion into the Zoo of Shimura subvarieties of the Siegel
space γ\H2. We shall construct in a very elementary way an infinite collection of species of

5[not yet complete] Igusa considers the generic sextic

Y 2 = u0x
6 + u1x

5 + · · ·+ u5x+ u6 (25)

with u0, u1,. . ., u1 independent variables. which can be written in the form

Y 2 = u0 ·
6
∏

1

(x− xi).

There are four homogeneous polynomials A(u), B(u), C(u) and D(u) in the coefficients of the equation ([?])
with D(u) the discriminant of the equation in u which are used to introduce

J2 = 2−3A, , J4 = 2−53−1(4J2 −D), J6 = 2−63−2(8J3

2 − 160J2J4 − C), J10 = 2−12D.

and it can be seen that

Z[J ] = Z[J2, J4, J6, J
±

10
] = K[x1, x2, x3, x

±

5
]/(x1x3 − x2

2 − 4x4).

We put the weight i on the Ji for 1 ≤ i ≤ 4, on J10 the weight 5 and denote by R the subring consisting of the
elements of degree 0. Then

ProjR
contains as an open subset U which is birationally equivalent to the moduli space M2 for hyperelliptic curves
of genus 2 which coincides with the moduli space of abelian surfaces.
The elements

J5

2
J−1

10
, J3

4
J−2

10
, J5

6
J−3

10

in R are algebraically independent and invariant under the action of the group µ5 of 5th roots of unity given
by Ji 7→ ζiJi for some primitive 5th root of unity ζ and therefor isomorphic to the invariants Q[y1, y2, y3]

µ5 in
Q[y1, y2, y3] under the action yi 7→ ζiyi.
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Shimura subvarieties. This can be done just by some linear algebra starting from polarized
lattices as defined in lecture 5. The central point in the construction is the endomorphism
algebra of a polarized lattice which we shall now going to introduce.
We say that a homomorphism ϕ : Λ → Λ′ of lattices is a homomorphism between polarized
lattices (λ, J, E) and (λ′, J ′, E ′) if and only if ϕ ◦ J = J ′ ◦ϕ and if E ′(ϕ(u)ϕ(v)) = λ(ϕ)E(u, v)
fur all u, v ∈ Λ and some λ(ϕ) ∈ Z for some λ : Hom(Λ ⊗Z Λ′,Z with the property that if
Λ = Λ′ then χ is induced from a character of End(Λ)times. A homomorphism ϕ : Λ → Λ′ is
called an isogeny if it is surjective and has finite kernel. It is easy to see that the category of
polarized lattices is semi-simple up to isogeny. This means that up to isogeny every projector
π : Λ → Λ′ has an orthogonal complement. Therefor any polarized lattice is isogenous to a finite
product of polarized lattices which are simple. We now restrict ourselves to the simple case.
In this case as one may again easily verify that the endomorphism algebra End0 ((λ, J, E)) :=
End ((λ, J, E))⊗Z Q is a division algebra or in other terms a skew field.
An example for a division algebra are the Hamiltonian quaternions. This is a vector space H

of dimension 4 and generated by elements 1, i, j and k and with algebra structure defined by

i2 = −1 = j2, ij = k = −ji.

This example has been generalized to get quaternion algebras. This is a vector space Q over a
field K which we assume to have characteristic zero and which is generated by elements 1, i, j
and k and with algebra structure given by

i2 = a, j2 = b, ij = k = −ji.

for a b in K. Depending on the field K and on a, b the algebra obtained is either a division
algebra or the matrix algebraM2(k). Over the reals according to Frobenius the only possibilities
are H orM2(R). If the field k can be injected into the reals then Q⊗kR is a quaternion algebra
over the reals and the alternatives from above apply. In the first case we say that Q is definite
and in the second case that it is indefinite. Quaternion algebras turn up in the classification
we are going to give.
Coming back to the polarized lattice we introduce V = Λ⊗ZQ and canonically identify EndQ(V )
with V ∨ ⊗Q V via v∨ ⊗ v 7→ t : v 7→ v∨(v) for v ∈ V, v∨ ∈ V ∨. Then we define a trace map

tr : End0 ((λ, J, E)) −→ Q

v∨ ⊗ v 7→ v∨(v)

We assume that the lattice has a principal polarization and use this to obtain an isomorphism
ι : V −̃→V ∨ which maps v to ι(v) : w 7→ E(v, w). Then the map f 7→ ι∨ ◦ f∨ ◦ ι with f∨, ι∨

dual to f, ι gives an involution f 7→ f † on End0 ((λ, J, E)) called Rosati involution. It satis-

fies (fg)† = f †g† and
(

f †)† = f and is, as can be shown, a positive involution in the sense
that the symmetric bilinear form (f, g) 7→ tr(fg†) is positiv definite. Let K be the center of
End0 ((Λ, J, E)) and K0 be the subfield {k ∈ K; k† = k}. Then K0 is totally real and either
K = K0 or an imaginary quadratic extension of K0.

For the rest of the section we specialize to the case of a lattice of rank 4 which corresponds via
the Riemann Existence theorem to abelian surfaces. We are going now to give the classification
of the possible endomorphism algebras End0 ((Λ, J, E)) which appear in this situation:

Type I: Z,
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Type II: OK = Z+ Z · f(D +
√
D)/2 with 0 6= f ∈ Z, K = Q(

√
D), D > 0 squarefree,

Type III: an order in an indefinite quaternion algebra over Q,

Type IV: an order in a quartic CM-field K ⊃ K0 ⊃ Q.

Each of the types II, III, IV contains infinitely many algebras and for each type and each Φ in
one of these families in the type there is is a moduli spaceMΦ of abelian surfaces AΛ = Λ⊗ZR/Λ
with End ((Λ, J, E)) ⊇ Φ. The dimensions are 3 for Type I, 2 for Type II, 1 for Type III and
0 for IV. There is a natural ordering on the set of types with I ≤ II ≤ III and I ≤ II ≤ IV
which carries over naturally to the MΦ with reversed ordering. The MΦ represent the Φ-
species. The latter we call Φ-special. In the case of Type IV are the CM-points. This leads us
to state the general conjecture of the type André-Oort:

Conjecture 6.1. The Zariski closure of any set Σ of special subvarieties of M2 is a finite

union of special subvarieties.

This conjecture seems to be open even in the case when the set Σ consists of special points. It
also covers the case of so-called Hilbert modular surfaces which were very intensively studied
in the 80ies by Hirzebruch and Zagier. Hilbert modular surfaces are Shimura subvarieties of
the moduli space of abelian surfaces which was discussed in lecture 5
To define Hilbert modular surfaces we fix a real quadratic number field K = Q(

√
d) with d

square-free. The discriminant D of K is

d =

{

d, if d ≡ 1 (mod 4),
4d, if d ≡ 2, 3 (mod 4).

(26)

We write ω = (D +
√
D)/2 and then the ring of integers of K is

O = Z+ Zω.

There are two real embeddings σ1 and σ2 of F into R. We define the Hilbert Modular group as

ΓK = SL2(O).

for which we have an embedding

Γ →֒ SL2(R)× SL2(R) (27)

γ 7→ (γσ1 , γσ2) (28)

and which acts on H× H as
γ(z, w) = (γσ1z, γσ2w)

The quotient H = Γ\H × H is called Hilbert Modular surface. It is a Shimura variety of
dimension 2 and a subvariety of S2 and the moduli space of abelian surfaces with endomorphism
algebra O.
In [10] Mok studied totally geodesic subvarieties of Ball quotients and he proves the conjecture
in this case. It would be very interesting to see whether the arithmetic part can also be proved.
As a special case we have the Picard modular surfaces studied very carefully by Holzapfel in
the 80ies.
Another question is whether one can prove à la Mok the geometric part when all σ ∈ Σ have
dimension at least 1. For the arithmetic case there is some hope since we consider it as not
impossible to deal with it along the lines given by Kühne in his work on P1 × P1 by looking
very carefully at the Igusa moduli space.
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